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I. Pointing Accuracy of the Low-Cost Large Space Telescope Due to

Noise and Quantization

I-I. Introduction

The objective of this study is to conduct an investigation on the

pointing stability of the low-cost Large Space Telescope (LST) system.

The low-cost LST is characterized by the use of reaction wheels for

the generation of control torques. Because of the critical requirement

on the pointing accuracy of the LST, the nonlinear frictional characteristics

of the bearings of the reaction wheels cannot be neglected. It is well

known that the nonlinear friction can'cause limit cycles in a closed-loop

system.

Another possible source of pointing error in the LST is due to the

effect of quantization and sensor noise. Since the LST is a digital

system, D-A and A-D converters, and sensors for positional and rate

feedbacks are used. Sensor noise and amplitude quantization will also

cause pointing error in the LST. In addition, quantization is a

nonlinear phenomenon so that it may also cause self-sustained oscillations

in the closed-loop system.

The dynamic modeling of the single-axis LST is described in this

chapter. Several methods of evaluating the attitude error of the digital

LST due to quantization and noise inputs are given.
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I-2. Dynamic Models of the Low-Cost LST System

The dynamic model of the single-axis low-cost LST system with

sampled data is shown in the block diagram of Fig. l-l. The rigid

body is represented by the double-integrator transfer function. The

controller is formed by proportional, rate, and integral feedbacks of

the vehicle attitude. The nonlinear element N in the reaction wheel

dynamics represents the rolling friction, and its functional description

is given by the well-known Dahl model.

The definitions of variables and the values of parameters and

constants are tabulated in Table l-I [1].

_c

T
c

TRW

ORW

TF

Ce

KR

KI

RF

KA

Table I-I.

Reference input co_J_and

Body attitude of LST

Body rate of LST

Torque command of reaction wheel

Torque output of reaction wheel

Angular velocity of reaction wheel

Angular displacement of reaction wheel

Frictional torque of reaction wheel

Attitude error

Proportional gain of controller

Rate gain of controller

Integral gain of controller

Feedback resistance

Voltage amplifier gain

1.65 x 106 N-m/rad

3.71 x 105 N-m/rad/sec

7.33 × lO5 N-m/rad/sec

0.484 ohms

I0000
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KM Motor torque constant 0.484 N-m/amp

KB Back emf constant 0.484 volt/rad/sec

2
JRW Moment of inertia of reaction wheel 0.2 Kg-m

Jv Moment of inertia of vehicle about
pitch axis 41822 Kg-m2

Motor time constant 0.002 sec
m

Motor resistanceRT lO ohms

Although the low-cost LST system has digita] control, it is

informative to analyze the system of Fig. 1-1 first without the sample-

and-hold device. Figure 1-2 st_s the signal flow graph of the continuous-

daU LST system. The cl_racterist|c equation of the system is detemim_.d

from Fig. I-2,

A :I + RFG2G 3 + KBKMO3G 6 + G2G3G4 + RFG1G2G3G4G5 (i-I)

where

Gl = Kp + Ki/s

G2 = KA/S

1

G3 - R + (l + Zms)

l
G4-Js

V

l
G5=- S

l

G6 - JRws

1
G7 = _-

and N denotes the analog describing function of the reaction wheel nonlinearity.



, i

|

_J

C76

U_P

!

ID



For the linear model of the LST system, we set N = O, and the

characteri sti c equati on becomes

TmJvRTS 5 + JvRT s4 + (JvRFKA + KBKMJv)s3 + RFKRKAS2
JRW

+ KARFKpS + KAKIR F = 0
(i-2)

It is of interest to investigate the dynamics of the reaction wheel

and the vehicle. The open-loop transfer function between Tc and _B is

¢__B= RFKA

TC _lvSE(RTzmS2 + RTS + RFKA _)
+ JRH

(I-3)

Substituting the system parameters into Eq. (I-3) gives

CB__
Tc

5.7865

s2(s2 + 500s + 242058.5)

5.7865

s2(s + 250 + j423.74)(s + 250 + j423.74)

(I-4)

Thus, the reaction wheel is shown to have relatively fast dynamics.

Substitution of the values of the system paran_ters into Eq. (I-2),

and simplifying, the characteristic equation of the linear LST system is

written

s5 + 500s4 + 242058.5s 3 + 2.1468 x 106s 2 + 9.5476 × 106s

+ 4.24145 x 106 = 0

The roots of the characteristic equation are:

(l-s)



s : -0.49659

s = -4.22743 + j4.25123

s = -4. 22743 - j4.25123

s = -245.524 + j421.I18

s = -245.524 - j421.I18

Note that the damping ratio of the dominant complex roots is

0.705, and the natural undamped frequency is 6 rad/sec or 0.954 Hz.

These parameters are achieved by selecting the controller constants Kp,

KR and KI at the indicated values. However, the poles of the reaction

wheel dynamics at s : -250 + j423.74 and s = -250 - j423.74 are only

slightly affected by tlm body controller and they account for the charac-

teristic roots at s = -245.524 + j421.118 and s = -245.524 - j421.118 of

the overall closed-loop system. Since these fast roots are very far away

from the dominant ones, this means that for all practical purposes the

dynamics of the reaction wheel can be neglected as far as the linear

systm is concerned. Figure I-3 shows the block diagram of the simplified

continuous-data low-cost LST system, and the digital system is shown in

Fig. I-4.

The closed-loop transfer function of the continuous-data system of

Fig. I-3 is

¢B(S) _ KpS + KI

Jvs3 + KRs2 + KpS + KI

(1-6)

For the digital system of Fig. 1-4, the closed-loop transfer function

is written



8

¢C

Kp + _s

Ftgwre 1-3. Simplified conttn,_-data low-cost LST system.

CB
---Ira

:!

....

i̧ :::

. G1

-I_"" I-iKp + KI-5"

Figure 1-4. Simplified digital low-cost LST system.



@B(z) _ GA(Z)GB(Z)

l + Gc(Z)"+ GA(Z)GB(Z)
(I-7)

9

where

-Ts

Gho(Sl,,= I -se

GA(Z ) : ): (I -(ghoG 1 iKz KIT-K KlS + KI. ..P

z-l) s2 : z- I

= 1--1---]Gc(Z) _(GhoG4KR ) = KR(I - z "1
Jvs 2

Equation (I-7) is simplified to

T2(z + 1)2

2Jv(Z - I)

KR T

Jv z- 1

(l-B)

(I-9)

(1-10)

@B(z) T2(KpZ 2 + KITZ + KIT - Kp)

@c-_ = 2JvZ3 + (T2Kp + 2KRT - 6Jv)Z 2 + (6Jv - 4KRT + T2KIT)Z + (2KRT + KIT3 - 2Jv - KpT 2)

(I-11)

The characteristic equation of the system is

2JvZ3 + (T2Kp + 2KRT - 6Jv)Z 2 + (6Jv - 4KRT + T3KI)Z

+ 2KRT + KIT3 - 2Jv - KpT2 = 0 (i-12)

Or_



83644z 3 + (I.65 x I06T2 + 7.42 × 105T - 2.50932 × 105)z 2

+ (2.50932 x lO5 - 14.84 x I05T + 7.33 x I05T3)z

+ (-8.3644 x lO4 + 7.42 x loST + 7.33 x loST 3 - 1.65 × 106T 2) = 0

(I-13)

The characteristic equation roots are tabulated below as functions of

the sampling period T:

T (msec)

O.l

0.5

I

5

10

25

50

100

120

150

170

180

200

220

230

Roots

I, 0.998 _ j0.0025

I, 0.998 ± j0,0022

1, 0.996 ± j0.0043

0.998, 0.979 _ j0.0208

0.995. 0.957 _ jO.Q411

0.987, 0._ _ J0.0988

0.975, 0.766 ± j0.1825

0.950, 0.483 ± j0.2901

0.940, 0.356 ± jO.300

0.925, 0.150 ± j0.260

0.915, 0.0034 ± j0.144

0.910, 0.049, -0.195

0.900, 0.I07, -0.571

0.890, 0.1116, -0.9078

0.885, 0.1085, -I.077 (unstable)

The root loci of Eq. (1-13) are sketched in Fig. I-5 as a function of

T. For small sampling periods, the characteristic roots are all located near

10
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the z = I point. The linear digital LST system becomes unstable when

T exceeds approximately 225 msec.
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I-3. Effects of _uantization on Poi!_ting Stability of the Low-Cost LST -

Limit Cycle Conditions

Quantization occurs at at least three places in the LST system. Two

are at the displacement sensor and the rate sensor where A-to-D converters

are used. A quantizer is also needed at the control torque input to the

reaction wheel since D-to-A conversion is effected there. In addition, if

the integral control Ki/s is implemented digitally, quantization should be

considered in the digital controller as well. Figure I-6 shows the digital

LST system with quantizers. The z-transfer functions are defined in

Eqs. (l-B), (1-9), and (l-lO). The quantizers at the displacement

sensor, the rate sensor, and the reaction wheel control torque are denoted

by Qp, QR" and QT" respectively. The input-output relation of a quantizer

is shown in Fig. l-l. The quantization level is represented by h.

We shall analyze the effects of qua_tization on pointing stability

or accuracy of the LST by means of three different methods. The first

method utilizes the deterministic approach and establishes a leasc upper

bound on the pointing error due to quantization. The second method relies

on treating the quantizer as a noise source, and statistical analysis is

applied. The third method is also a statistical approach which represents

the quantizer by a linearized gain Keq(Z).

It should be pointed out that a system with quantization is a nonlinear

system and its behavior cannot be predicted by linear theory. One of the

well-known phenomena of a nonlinear system is that sustained oscillations

may occur. When a digital system has several quantizers, it is extremely

difficult to predict the condition of self-sustained oscillations.
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• Ftgure 1-6. ShsplffJed dtgtt_l LST sTst4m vlth ClUNttzers.
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Figure 1-7. Input-output characteristics of a quanttzer.
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To illustrate the effects of quantization, and how quantization can

cause sustained oscillations in an otherwise stable linear system, let

us refer to the digital systems shown in Figs. i-8 and ]-g. Th_ difference

between the two systems in Figs. l-8a and l-9a is that the former has

negative feedback and the latter has positive feedback; but both systems

are stable.

For r(k) = O, both linear systems have zero steady-state values for

c(k); that is, c(k) = 0 for k-_o, for arbitrary initial state c(O). We

shall show that when quantization is considered, the system in Fig. l-gb

has a steady-state error, whereas the system in Fig. 1-8b exhibits a

sustained oscillation.

Let the quantization level h be 2, (Fig. 1-7). The state equation

of the system in Fig. 1-9b is

c(k+l) = Q[O.9c(k)]

For c(O) = lO, it can be easily shown that c(k) = 2 for k > 8.

The state equation of the system in Fig. l-8b is

c(k+l) = Q[-O.9c(k)]

odd.

For c(O) = 10, c(k) : 2 for k _ 8 even, and c(k) = -2 for k > 8

Thus, the state of the system oscillates between -2 and +2.

15

(1-14)

(l-lS)
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(a) Linear system

c(k)

Figure 1-8.

(a) Linear system

¢(k)

(b) System with quantizer

Systems wlth quantizers.

,.ok)y_"t, I I,=(ko_)l"_ l_
0 z"

(b) $ystm with quantlzee

Figure 1-9. Systems with quantizers.

+ hD

÷+ -T

_GA(Z)

+ hT
-"2-

÷

t B

Figure I-I0. Digital LST system with quantizers replaced by

deterministic noise sources.
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I-4. Effects of quantization on PointinqLStability of the Digital Low-

Cost LST - Least Upper Bound Ouantization Error

in this secLiorl the effects of quanti _+_-_.u_,,,,,on +ho_,._low-cosf, . LST

system are investigated using a Jeterministic approach. The method

of analysis is based on the "worst" error condition due to quantization.

In general, the analysis gives a conservative estimation of the quantization

error.

Since the quantization error has a maximum bound of +_h/2, the "worst"

error due to quantization in a digital system can be studied by replacirKj

the _ntlzer in the state di_rm by i branch with _i_ gain aW an

external noise source with a sight nmgnttude of +hi2. 1_ block dtagrm

of the digital LST system with quantizers shown in Fig. I-6 is redrawn

in Fig, I-I0 with the noise sou_'ces. The transfer functions GA{z), _Cz).

and Gc(Z) are defined in Eqs. (I-8), (I-9), a_: (I-I0), r_I_lively,

The z-transform of the body attitude of the LST due to the three

quantizers when ¢c = 0 is

i

hD hT hR
÷ -_-GA(Z ) + +

_ z - _ T- 2 GB(Z ) (I-16)
_B (z) z - l I + GA(Z)GB(Z) + Gc(Z)

Substitution of Eqs. (I-8) through (I-I0) into Eq. (I-16), and

simplifying, we have

 B(Z)-
hD hT hRz [+_(KDZ+ KIT- Kp) -+(-)-+-_-)(z-l)]T2(z+ly

z - l 2Jr(Z_ l)3 + T2(Z+I )(KpZ + KIT - Kp) + 2TKR(Z-I )2

(I-17)
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The steady-state error of the body attitude due to the quantization effects

is obtained by applying the final-value theorem to Eq. (l-17), (if the

system is stable).

Thus,

hD
ZximCB(kT) = _Em(1 - z-1)¢B(Z) = +_ 2
k-Ko z-*1

(I-i8)

It is interesting to explore the significance of this result on

the error due to quantization. Firstly, the quantization error at the

displacement sensor is propagated through the system without change in

_1i_. _ly, the errors _ to the t_r_ and rate sensor

quantizers are completely ellmlnated at the output position, l"nls is

attributed to the integral control Kl/S in the forward path.

If the proportional-plus-integral controller is implemented

digitally, the transfer function GA(Z) becomes

TKI(Z + 1 )
GA(Z) : Kp + "2(z - I) (i-19)

Substituting GA(Z) from Eq. (l-19) into Eq. (l-16), we can again show

that the steady-state error in ¢B(kT) due to the three quantizers is

±hD/2, and the errors due to QR and QT are completely eliminated.

In reality, the digital implementation of the controller should

also include quantization in the digital process. Figure I-II shows

the block diagram of the LST system with quantizations also considered

in the digital controller. The z-transform of the body attitude of the



+ _I_
+ ÷I

÷I
!

T

0

¢_

¢_.

G

$

Q_

"0

Q

N

e..

O"

t_

t

'v

G_
II.



20

LST due to the five quantizers when : --0 is
C

+-_-GA(Z) +__ ± _+__ + __(.. / -
_ z GB(Z )_B (z) z- 1 l + GyG-B-(--_Gc(Z)

(i-20)

where GA(Z) is given by Eq. (l-19) and GB(Z) and Gc(Z) are given in

Eqs. (I-9) and (l-]O), respectively.

Applying the final-value theorBn to Eq. (I-20), we have

± h2 ± hDKI T hD h2

(_Lm¢B(kT) = 2KIT = ±-_- -+2KITk_,_

(i-21)

It is interesting to note that the introduction of the integral

control eliminates the noise signals that enter at all peints after the

integral control in the control loop; however, the digital implementation

of this co,trol in turn produces a quantization error which is bounded

by ±h2/2KIT, where h2 is the quantization level.

v



21

I-5. Effects of quantization on Pointing Stability of the Digital Low-

Cost LST - Equivalent Noise Source, Statistical Analysis

In this section the pointing errors uF Lhe u,_,_a,_..... ' '_, _j_e,,,......_"_

to quantizations in the displacement, rate, and torque channels are

investigated by statistical means. The rms (root-mean-square) error

in _bB due to guantizations that are represented by equivalent Gaussian

noise sources with zero mean, or white noise sources, is determined by

setting qbc = O. The results are then compared with those of the continuous-

data LST obtained in reference [1].

The block diagram model of the continuum=s-data LST with the quantizers

replaced by equivalent noise sources is shown in Fig. 1-12. The equivalent

digital system is shown in Fig. 1-13. It is assumed that the equivalent

noise sources that represent the quamtization c@erations are white, so

that their power spectral density functions in both the s and the z

domains are constants. Therefore,

@O (s)' @D (z) = @D = power spectral density of displacement quantizer

CR (s)' CR (z) = ¢R = power spectral density of rate quantizer

@T (s)' @T(z) = @T = power spectral density of rate quantizer

Let the rms attitude error of the continuous-data LST due to @D

be represented by OBO. The ms errors are given by the following

relations:

Displacement:

°BD : _ MD(S)MD(-S)ds " @D
(l-22)



2?

Kp + KI
s

tT(S);__

+

®B

Figure 1-12. Continuous-data LST with quantizers rep_s_ted by

equivalent v_|te noise sources.

GA(Z)

of(z)=+I

+

Figure1-13. Digital LST with quantizers represented by equivalent

white noise sources.



where MD(S) denotes the transfer function between @D(S) and @B(S),

23

@B(S) KpS + KI

MD(S ) -
@c_s) Jv s3 + KRS2 + KpS + KI

Similarly,

Rate:

MR(S)MR(-S)ds • @RI I/2
(I-24)

TorFl_:

i ll/Z1 J® MT(S)MT(-S)ds
°BT: _ I_j, " CTJ

(1-zs)

where

*B(s) s

-MR(S) = MT(S) = @T--_-T= jvs3 + KRS2 + KpS + KI

This result is obtained with the assumption that the quantizer noise

is not multiplied by the sensor gain KR, as in reference [I]; otherwise,

the right-hand side of Eq. (I-26) should be multiplied by KR-

The total ms attitude error due to all three quantizers is simply

the sum of the errors due to each noise source acting alone; that is,

(1-26)

oB = OBD + OBR + OBT
(I-27)

From Eq. (I-26) it is easy to see that OBR and CBT have the same magnitude.

The line integral of the form of Eq. (I-22) can be evaluated by
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contour integration, and then the residue theorem. An integral table is

also available for the evaluation of the contour integral. Using Eqs.

(I-23) and (I-26), the rms attitude errors of the continuous-data system

are obtained as

p

I K2 + 1I/2

°BD = 12(KRPKp KIKR- KiJv) @DJ = (2.5748@D)I/2 = 1.605_@D

°BT = [2(KRKp l- KiJv)CTI I/2
= (0.8598 x I0-12@T)I/2

= 0.927 x 10-6 ¢,_T

OBR = 0.927 x I0"6¢,_R

For the digital LST, the rms attitude errors are:

DisplaceMent:

]
O_D =C_-j-_MD(Z)MD(Z'])z'Idz. @D] I/2

(i-28)

(i-_)

(i-3o)

(I-31)

Rate:

Torque"

°_T = [2_ MT(Z)MT(Z'I)z-ldz" CTI I/2

The transfer functions, MD(Z), MR(Z), and MT(Z) are determined from

(I-32)

(1-33)
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Fig. 1-13.

GA(Z)GB(Z)

MD(Z) - 1 + GA(Z)GB(Z)+ Gc(Z) (I-34)

-MR(Z ) = MT(Z ) -
GB(Z)

1 + GA(Z)GB(Z) + Gc(Z)
(i-35)

where

GB(Z ) : T2(z + I)
2Jv(Z - I)2

(I-36)

KRT

Gc(Z) = Jv(Z - 1) (I-37)

and

KpZ + KIT - Kp (sample-and-hold and (I-38)
GA(Z) : z - 1

analog controller)

(2Kp + TKI)Z + TK I - 2Kp (digital implementation (I-39)

GA(Z) : 2(Z- -I) of controller)

Substituting Eqs. (I-36) through (I-39) into Eqs. (I-34) and (I-35),

we get the following transfer functions which are used for the computation

of the rms attitute errors in Eqs. (l-31) through (I-33).

With zero-order hold and analog controller,

MD(Z ) :
T2[Kpz 2 + Kiz + (KIT - Kp)]

Al
(I -40)
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T2(z 2 - 1)
-M R(z) = MT(Z ) = A1 (1-41)

where

A1 = 2JvZ3 + (-6J v + 2KRT + T2Kp)Z 2 + (6J v

_ T2 )+ (-2J v + 2KRT + KIT3 Kp

- 4KRT + KIT3)z

(1-42)

With digitally implemented controller,

T2[(2Kp + TKI)Z2 + 2TKIZ + TK I - 2Kp

A2
('1-43)

_MR(Z) : MT(Z ) : 2T2(z 2 - l,)
A2

(1-44)

where

A2 = 4JvZ3 + (-12J v + 2T2Kp + T3KI + 4KRT)Z 2

+ (12J v + 2T3KI - 8KRT)Z + (4KRT + T3KI - 2T2Kp - 4Jv)

A tabulation method or a numerical method [3] can be used to

evaluate the contour integrals of Eqs. (I-31), (I-32), and (I-33), once

the values of the parameters of the transfer functions are known. Table

I-2 gives the values of (@Bms)_, (@B ms) _ and (@B )* for various• rms R

values of the sampling period T.

(i-45)



Z1

T
(msec)

Table I-2.

Sample-and-Hold with

Analog Controller

aid o*BT

Digitally Implemented
Controller

CI*BD OUT

0.01 0.0052 2.932 × 10 -9 0.0052 2.932 x 10 -9

0.I 0.0161 9.274 × 10 .9 0.0161 9.274 × 10 -9

1,0 0.0508 2.936 x 10 -8 0.0508 2.936 × 10-8

5.0 0.1140 6.599 x 10-8 0.1141 6.595 x 10-8

I0 0.1621 9.394 x !0-8 0.1622 9.383 x 10-8

25 0.2602 1.515 x 10-7 0.2607 1.511 x 10-7

50 0.3777 2.216 x 10-7 0.3796 2.205 x lO"7

100 0.5652 3.368 x lO"7 0.5720 3.339 x lO-7

The results tabulated in Table I-2 show that the ms errors of the

LST with sample-and-hold and the analog controller are very close to those

of the LST with the controller implemented digitally.

It is interesting to show that the ms attitude errors of the digital

LST due to quantization are related to those of the continuous-data system

in Fig. _-12.

Applying the limit as T approaches zero to Eq. (l-31), we get

[_ Z)MD(z_l ]I/21 MD( )z-ldz_D
T_O T_O

(1-46)

Since

Z_m MD(Z) = MD(S)
T_O

(1-47)



q

J

where MD(S) is given in Eq. (I-23), and MD(Z) is given by either Eq.

(I-40) or (1-43), depending on the w_y the controller is implemented,

and

I

z''dz : Tds

Eq. (I-46) is written

I112

[ T l j= 1T+oZ_mO_D : _ -J= MD(S)MD(-S)ds@ D
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(i-48)

(I-49)

°

or

°8o= % (1-so)

The meaning of this relation is that the mean-square value of the

attitude error of the continuous-data system is equal to I/T times the

attitude error of the digital system as T approaches zero. Table I-3

gives the values of O_D/TV_Dand _T/V_T for various values of T.

These values are very close to the values of °BD = 1.605 and OBT =

0.926 x lO"6, respectively, especially at very small sampling periods.

These relations show that, in general, for small sampling periods,

the attitude error due to a white noise input in a digital system will

be less than that of the same system without sampling. For example,

for T = 25 msec, the rms attitude error O_D is 0.2602 @V_D , whereas

is 1.605 ¢V_D . Therefore, the use of the continuous-data LST model°BD

of Fig. 1-12, as in Ill, for the error analysis of the digital LST

results in conservative results.
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Table 1-3.

%

!

L_ ¸

Rt ¸

t!
L

T

(msec)

0.01

0.1

1.0

5.0

10

25

50

100

BD O_T

1.644 0.927 x 10 -6

1.610 0.927 x 10 -6

n_ . .,_8 ! 0-6! ,6,,v 0 Q9 x

1.612 0.933 x 10 -6

1.621 0.939 x 10 -6

1.645 0.958 x 10 "6

1. 689 O. 991 x 10 "6

1.787 1.065 × 10 -6

The results in Tables I-2 and I-3 again show that for the same

quantization levels, the quantizer in the displacmnent channel produces

far greater attitude errors than those due to the quantizers in the rate

and torque channels.
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In this section the effects of quantization on the low-cost LST

are studied by means of a quasilinearized equivalent-gain approach [4],

[5]. Although the analysis is conducted in the statistical sense, there

is a basic difference between the present analysis and the one conducted

in Section I-5. In the previous section, the rms attitude error of the

LST is evaluated by treating the quantizers as noise sources that are

stationary Gaussian processes with zero means. In this section,

the quantizer will be treated as a nonlinear element whose input is

a random stochastic process. An equivalent gain, Keq(Z), is derived for

the quantizer. The attitude of the LST is then determined with the quantizer

replaced by Keq(Z), and when the system is subject to a stochastic input.

The only restriction with this method is that only one quantizer can be

considered at a time. Since it has been established that the attitude

of the LST is more sensitive to the quantizer QD' we shall consider only

the system model shown in Fig. 1-14.

The quantizer QD is isolated as shown by the block diagram in

Fig. 1-15a; the input is x(t) and the output is y(t). Figure 1-15b

shows the equivalent gain representation of QD" The equivalent gain

of QD is defined as

Keq(Z) :
(I-51)

where @xx(Z) denotes the z-transform of the autocorrelation function of

x(t), and @ (z) is the z-transform of the crosscorrelation function of
xy
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0 C _B

Ftgure 1-14.

Figure 1-15.

OtgitaT LST with quanttzer in the displacement

(a)

°xx(Z) )I °xy(Z)Keq(Z) ----

(b)

The representationof the quantlzer with statistical

input and output as an equivalent gain.



x(t) and y(t). In order to derive F.,eq(Z),we consider that the input

to QDis a stationary Gaussian process with zero meanso that the

probability function is

32

p(x)=

2
exp(-x2/2ax )

2v_ o
x

(1-52)

where ax is tim standard deviation of x(t).

The crosscorrelation function of x(t) and y(t) is given by

where

QD[x(t)] : y(t)

is the mathematical description of the quantizer, and

(1-s3)

(1-s4)

®xx(T)
2

ax

(l-s5)

Thus,

oo@xy($) : --_ CXX(T) QD(;_)P(k)kdk

(I X

(1-56)

:?.

Taking the z-transform on both sides of Eq. (I-56) and rearranging, we have

¢_x'(z) 1 I oo
Keq (z) = _ = a-2 .oo QD(X)P(k)XdX (I-57)

X
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Although the equivalent gain Keg(Z) is indicated as a function of z,

the nature of the right-hand side of Eq. (l-57) implies that it is

always a constant. It is apparent that although our interest is centered

on the quantizer nonlinearity, in general, the definition of Keg(Z) can

be applied to any colnman nonlinearities found in control systems.

With reference to the quantizer characteristics of Fig. I-7,

y(t) : 0 -h/2 < x < h/2

y(t) = -h -3h/2 < x _-h/2

y(t) = h h/2 _ x < 3h/2

3

y(t) : -(N-1)h - 2(N-z1)h <x <_- (2N-3)hz

y(t) = (N-l)h 2(N-3)h < x < _2N-l)h
2 - 2

y(t) = -Nh -= < x < (2N-l)h-- 2

y(t) = Nh 2(N-1)h < x < o_
2 -

where N is a positive integer.

Equation (l-57) gives

= l II-(2N-l)h/2

Keg(Z) _2x2L--_

(-Nh)p(1)ldl

+ -(2N-3)h/2
-(2N-1)h/2

I -h12-(N-l)hp(X)_,d), + -.. + -hp(_)},dX
J-3h/2

(2N-l)h/2

+ ,|3h/2 hp(X)_dx + ... + r| (N-l)hp(1)_dX

J h/2 J(2N-3)h/2

S 1+ Nhp(_)_dX

(2N-l)h/2

(]-5B)
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Or_

K
eq (z) = _ 2h J hl2 p(,_),\d_ + .... _ 2(N-l)h

o x (2N-3)h/2

+ 2Nh I p(_)_d_j(2N-I)h12

p(k)Xd_

(1-_g)

Since all the integrals in the last equation have the same integrand,

we evaluate one of the integrals as follows:

Let

Them

and

f3h/2 .3h/2 exp(-_2/2o_)(p(_)_d_
J h12 --OxJ h12 J2_

_d_ (1-60)

du - _dX 2
2 or _dX : ox du

0 x

3h12 p(_)_dX -

h12

1 19h2/8°2x

J2-_ J h2/8o_ exp('U)°xdU

]

/2T °x h21exp(- 9h2) + exp(- )

8o X

(I-61)

Thus, the equivalent gain for the quantizer with 2N levels of quantization

is
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m=

!
5

.2

i

A

Keq(Z) = exp(- _) + exp(- + exp(-
8(i:X 8o2

X

•" + exp(- (2N'l)2h2_

87-'
X

Although the equivalent gain has been derived from QD' the

response of the closed-loop system of Fig. 1-14 cannot be determined

by using Keq(Z) directly, since ox, the standard deviation, of x(t)

is not known. The analysis procedure is outlined as follows:

For a given _c' which is the ms value of the input,

(1)

(2)

(I-62)

The equivalent gain Keq(Z) is computed using Eq. (I-62) for

various values of ox-

The values of ox that correspond to the various values of Keq(Z)

obtained in step (I) are calculated from

Ox = [2_--_Mx(Z)Mx(z-l)@cc(Z)z'Idzl 1/2 (]-63)

where

l

Mx(Z) = , + Keq(Z)GA(Z)gB(-Z)+ Gc(Z)
(1-64)

and

#cc (z) = 02c

(3)

It is assumed that the input of the system is a white noise.

The solution of ox for the given oc is determined when there is

a match between ox from Eq. (I-63) and that used in step (I).

The rms attitude response of the system is determined from
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I12"(z)"(z-I  cc(Z)z-ldz (I-65)

using the Keq(Z) which corresponds to the ox obtained in

step (2).

For the LST system, a quantization level of h : 0.003 is selected

for QD" The quantizer is assumed to saturate after 5000 incre_lents; that

is, N = 5000 in Eq. (I-62). A digital computer program is prepared

which automatically cuts off the series of Eq. (I-62) when an additional

term is contributing less than 10 -6 to the entire result. The sampling

period T is chosen to be 25 msec, and the system transfer functions GA(Z),

GB(Z), and Gc(Z) are given by Eqs. (I-38), (1-36), and (I-37), respectively.

Following the procedure outlined above, the results of the analysis with

several va]ues of o are tabulated in Table I-4.
c

The resuits in Table I-4 show that for a given set of quantization

and saturation levels, both small and large input signals cause the

quantizer to act as an attenuator. The truecharacteristics of the system

as a function of the input ocaredisplayed by normalizing °B" The last

coIJmn in Table I-4 represents the normalized output aBN, which is

defined as

OBN =
° B

°Bl°c
(i-66)

d

.... A

where

OBl = oB at Oc 1
(I-67)
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Table I-4.

Input No. of terms Output Normalized

used in K (z) output
oc ex Keq eq oB

°BN

5xlO -4 5.318x10 -4 0.075 2 5.20×I0 "5 0.4

lO-3 1.086xlO "3 0.797 3 2.40x10 -4 0.92

I0-2 1.093×10 -2 l.O 19 2.68x10 -3 1.0

lO-l 1.093x 10-l 1.0 176 2.60x I0-2 1.0

l 1.093 1.0 1753 2.60 x lO"l 1.0

10 10.87 0.836 5000 2.383 0.916

SO 53.37 O. 22 5000 6.88 O. 529

Figure 1-16 shows the plot of Keq(Z) versus Ox" The plot has the

significance of a "statistical describing function" of the quantizer. This

plot shows that for small inputs, when the input magnitude is comparable to

the quantization level, h, the gain drops below unity, and the quantizer is

attenuating the signal. For larger inputs the quantizer appears as a unity-

gain element in a statistical sense, and for very large inputs, where the

input magnitude is comparable to maximum output (N levels of h), the

quantizer gain again reduces, and the input is attenuated.

Figure 1-17 gives a plot of ax versus oc which represents the solution

of Eq. (I-63) and step (1) for the range of oc considered.

Figure 1-18 shows a plot of OBN versus oc. It is seen that the normalized

output reduces from unity in the ranges of o when K (z) is less than I.
c eq

As an interesting comparison, the statistical method of Section I-5

assumes Keq(Z) = l for all values of oc and, consequently, it always yields

T
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a result of OB_! = I. In this sense that method is more conservative and does

not recognize the severity of the nor_linearity due to the quantizer at

very small and very large input magnitudes.
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